Endomorphisms of Polynomial Rings and Jacobians

نویسنده

  • SUSUMU ODA
چکیده

The Jacobian Conjecture is established : If f1, · · · , fn be elements in a polynomial ring k[X1, · · · , Xn] over a field k of characteristic zero such that det(∂fi/∂Xj) is a nonzero constant, then k[f1, · · · , fn] = k[X1, · · · , Xn]. Let k be an algebraically closed field, let k be an affine space of dimension n over k and let f : k −→ k be a morphism of algebraic varieties. Then f is given by coordinate functions f1, . . . , fn, where fi ∈ k[X1, . . . , Xn] and k = Max(k[X1, . . . , Xn]). If f has an inverse morphism, then the Jacobian det(∂fi/∂Xj) is a nonzero constant. This follows from the easy chain rule. The Jacobian Conjecture asserts the converse. If k is of characteristic p > 0 and f(X) = X +X, then df/dX = f (X) = 1 but X can not be expressed as a polynomial in f. Thus we must assume the characteristic of k is zero. The conjecture can be stated as follows: 1991 Mathematics Subject Classification. Primary 13C20, Secondary 13F99.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correspondences with Split Polynomial Equations

We introduce endomorphisms of special jacobians and show that they satisfy polynomial equations with all integer roots which we compute. The eigen-abelian varieties for these endomorphisms are generalizations of Prym-Tyurin varieties and naturally contain special curves representing cohomology classes which are not expected to be represented by curves in generic abelian varieties.

متن کامل

Hyperelliptic Jacobians without Complex Multiplication

has only trivial endomorphisms over an algebraic closure of the ground field K if the Galois group Gal(f) of the polynomial f ∈ K[x] is “very big”. More precisely, if f is a polynomial of degree n ≥ 5 and Gal(f) is either the symmetric group Sn or the alternating group An then End(J(C)) = Z. Notice that it easily follows that the ring of K-endomorphisms of J(C) coincides with Z and the real pro...

متن کامل

The Endomorphism Rings of Jacobians of Cyclic Covers of the Projective Line

Suppose K is a eld of characteristic 0, Ka is its algebraic closure, p is an odd prime. Suppose, f(x) 2 K[x] is a polynomial of degree n 5 without multiple roots. Let us consider a curve C : y = f(x) and its jacobian J(C). It is known that the ring End(J(C)) of all Ka-endomorphisms of J(C) contains the ring Z[ p] of integers in the pth cyclotomic eld (generated by obvious automorphisms of C). W...

متن کامل

Ring endomorphisms with nil-shifting property

Cohn called a ring $R$ is reversible if whenever $ab = 0,$ then $ba = 0$ for $a,bin R.$ The reversible property is an important role in noncommutative ring theory‎. ‎Recently‎, ‎Abdul-Jabbar et al‎. ‎studied the reversible ring property on nilpotent elements‎, ‎introducing‎ the concept of commutativity of nilpotent elements at zero (simply‎, ‎a CNZ ring)‎. ‎In this paper‎, ‎we extend the CNZ pr...

متن کامل

Four-Dimensional GLV via the Weil Restriction

The Gallant-Lambert-Vanstone (GLV) algorithm uses efficiently computable endomorphisms to accelerate the computation of scalar multiplication of points on an abelian variety. Freeman and Satoh proposed for cryptographic use two families of genus 2 curves defined over Fp which have the property that the corresponding Jacobians are (2, 2)isogenous over an extension field to a product of elliptic ...

متن کامل

Endomorphisms of Superelliptic Jacobians

Let K be a field of characteristic zero, n ≥ 5 an integer, f(x) an irreducible polynomial over K of degree n, whose Galois group contains a doubly transitive simple non-abelian group. Let p be an odd prime, Z[ζp] the ring of integers in the pth cyclotomic field, Cf,p : y p = f(x) the corresponding superelliptic curve and J(Cf,p) its jacobian. Assuming that either n = p + 1 or p does not divide ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004